“Sci-K 2022 – International Workshop on Scientific Knowledge: Representation, Discovery, and Assessment” is the introductory chapter of the workshop proceedings of “Sci-K 2022 – International Workshop on Scientific Knowledge: Representation, Discovery, and Assessment” co-located with The Web Conference 2022. Paolo Manghi1, Andrea Mannocci1, Francesco Osborne2, Dimitris Sacharidis3, Angelo Salatino2, Thanasis Vergoulis4 1 CNR-ISTI – National […]
Tag: Scholarly Data
The AIDA Dashboard: a Web Application for Assessing and Comparing Scientific Conferences
“The AIDA Dashboard: a Web Application for Assessing and Comparing Scientific Conferences” is a research paper submitted to IEEE Access. Simone Angioni1, Angelo Antonio Salatino2, Francesco Osborne2, Diego Reforgiato Recupero1, Enrico Motta2 1 Department of Mathematics and Computer Science, University of Cagliari (Italy) 2 Knowledge Media Institute, The Open University, Milton Keynes (UK) Abstract […]
Characterising Research Areas in the field of AI
“Characterising Research Areas in the field of AI” is a research paper submitted to the special track “Statistical Methods for Science Mapping” on “51st Scientific Meeting of the Italian Statistical Society”. Alessandra Belfiore1, Angelo Salatino2, Francesco Osborne2 1 Università della Campania Luigi Vanvitelli, Caserta (Italy) 2 Knowledge Media Institute, The Open University, Milton Keynes (UK) Abstract […]
New trends in scientific knowledge graphs and research impact assessment
“New trends in scientific knowledge graphs and research impact assessment” is the introductory chapter of the Special Issue on “Scientific Knowledge Graphs and Research Impact Assessment” at Quantitative Science Studies (QSS by MIT Press). Paolo Manghi1, Andrea Mannocci1, Francesco Osborne2, Dimitris Sacharidis3, Angelo Salatino2, Thanasis Vergoulis4 1 CNR-ISTI – National Research Council, Institute of Information Science […]
AIDA: a Knowledge Graph about Research Dynamics in Academia and Industry
“AIDA: a Knowledge Graph about Research Dynamics in Academia and Industry” is a research paper published at the Special Issue on “Scientific Knowledge Graphs and Research Impact Assessment” at Quantitative Science Studies (QSS by MIT Press). Simone Angioni1, Angelo Antonio Salatino2, Francesco Osborne2, Diego Reforgiato Recupero1, Enrico Motta2 1 Department of Mathematics and Computer Science, University […]
Assessing Scientific Conferences through Knowledge Graphs
“Assessing Scientific Conferences through Knowledge Graphs” is a paper published at the Industry Track of the 2021 International Semantic Web Conference. Simone Angioni1, Angelo Antonio Salatino2, Francesco Osborne2, Aliaksandr Birukou3, Diego Reforgiato Recupero1, Enrico Motta2 1 Department of Mathematics and Computer Science, University of Cagliari (Italy) 2 Knowledge Media Institute, The Open University, Milton Keynes (UK) […]
AIDA-Bot: A Conversational Agent to Explore Scholarly Knowledge Graphs
“AIDA-Bot: A Conversational Agent to ExploreScholarly Knowledge Graphs” is a demo paper accepted for presentation at the International Semantic Web Conference (ISWC 2021) poster and demo session. Antonello Meloni1, Simone Angioni1, Angelo Antonio Salatino2, Francesco Osborne2, Diego Reforgiato Recupero1, Enrico Motta2 1 Department of Mathematics and Computer Science, University of Cagliari (Italy) 2 Knowledge Media […]
Link Prediction of Weighted Triples for Knowledge Graph Completion Within the Scholarly Domain
“Link Prediction of Weighted Triples for Knowledge Graph Completion Within the Scholarly Domain” is a journal paper accepted at IEEE Access Mojtaba Nayyeri1,2, Gökce Müge Cil1, Sahar Vahdati2, Francesco Osborne3, Andrey Kravchenko4, Simone Angioni5, Angelo Salatino3, Diego Reforgiato Recupero5, Enrico Motta3, Jens Lehmann1,6 1 SDA Research Group, University of Bonn, 53115 Bonn, Germany 2 […]
CSO Classifier 3.0: A Scalable Unsupervised Method for Classifying Documents in Terms of Research Topics
“CSO Classifier 3.0: A Scalable Unsupervised Method for Classifying Documents in Terms of Research Topics” is a journal paper accepted at the Special Issue of “TPDL 2019 & 2020” at Scientometrics. Angelo Salatino, Francesco Osborne, Enrico Motta Abstract Classifying scientific articles, patents, and other documents according to the relevant research topics is an important task, […]
Applying Machine Learning Techniques to Big Data in the Scholarly Domain
Ontologies of research areas have been proven to be useful in many application for analysing and making sense of scholarly data. In this lecture, I will present how we produced the Computer Science Ontology (CSO), which is the largest ontology of research areas in the field of Computer Science, and discuss a number of applications that build on CSO, to support high-level tasks, such as topic classification, research trends forecasting, metadata extraction, and recommendation of books.