CSO Classifier 3.0: A Scalable Unsupervised Method for Classifying Documents in Terms of Research Topics

“CSO Classifier 3.0: A Scalable Unsupervised Method for Classifying Documents in Terms of Research Topics” is a journal paper accepted at the Special Issue of “TPDL 2019 & 2020” at Scientometrics. Angelo Salatino, Francesco Osborne, Enrico Motta Abstract Classifying scientific articles, patents, and other documents according to the relevant research topics is an important task, […]

Read More

Trans4E: Link Prediction on Scholarly Knowledge Graphs

“Trans4E: Link Prediction on Scholarly Knowledge Graphs” is a journal paper submitted to the Special Issue on “Knowledge Graph Representation & Reasoning” at the Neurocomputing Journal   Mojtaba Nayyeria, Gokce Muge Cila, Sahar Vahdatib, Francesco Osborned, Mahfuzur Rahmana,Simone Angionie, Angelo Salatinod, Diego Reforgiato Recuperoe, Nadezhda Vassilyevaa, Enrico Mottad and Jens Lehmanna,c aSDA Research Group, University […]

Read More

Clique Percolation Method in Python

Clique Percolation Method (CPM) is an algorithm for finding overlapping communities within networks, introduced by Palla et al. (2005, see references). This implementation in Python, firstly detects communities of size k, then creates a clique graph. Each community will be represented by each connected component in the clique graph. Algorithm The algorithm performs the following […]

Read More

AIDA Dashboard

The AIDA Dashboard is a web application that allows users to visualize several kind of analytics about a specific conference (see Figure 1). The backend is developed in Python, while the frontend is in HTML5 and Javascript. The AIDA Dashboard builds on the Academia/Industry DynAmics knowledge graph (AIDA), a large knowledge base describing 14M articles […]

Read More

ResearchFlow: Understanding the Knowledge Flow between Academia and Industry

“ResearchFlow: Understanding the Knowledge Flow between Academia and Industry” is a conference paper submitted to Knowledge Engineering and Knowledge Management – 22nd International Conference, EKAW 2020. Angelo Salatino, Francesco Osborne, Enrico Motta Abstract Understanding, monitoring, and predicting the flow of knowledge between academia and industry is of critical importance for a variety of stakeholders, including governments, funding […]

Read More

Integrating Knowledge Graphs for Analysing Academia and Industry Dynamics

Academia and industry are constantly engaged in a joint effort for producing scientific knowledge that will shape the society of the future. Analysing the knowledge flow between them and understanding how they influence each other is a critical task for researchers, governments, funding bodies, investors, and companies. However, current corpora are unfit to support large-scale analysis of the knowledge flow between academia and industry since they lack of a good characterization of research topics and industrial sectors. In this short paper, we introduce the Academia/Industry DynAmics (AIDA) Knowledge Graph, which characterizes 14M papers and 8M patents according to the research topics drawn from the Computer Science Ontology. 4M papers and 5M patents are also classified according to the type of the author’s affiliations (academy, industry, or collaborative) and 66 industrial sectors (e.g., automotive, financial, energy, electronics) obtained from DBpedia. AIDA was generated by an automatic pipeline that integrates several knowledge graphs and bibliographic corpora, including Microsoft Academic Graph, Dimensions, English DBpedia, the Computer Science Ontology, and the Global Research Identifier Database.

Read More

Computing Automorphic Numbers

In our lab, we like to tease each other with fancy riddles. In our kitchen, we have a large wooden box, filled with some chocolates and locked by a 4-digits lock. Those who crave for some sugar will just need to solve the riddle and unlock the box.
The last few riddles involved a particular family of numbers which are called automorphic, and the complexity of such riddles was increasing with the size of those numbers in terms of the number of digits. For instance, in the last riddle, we were asked to compute a number with 44444 digits, requiring an enormous computational power.
In this post, I will show how I developed the algorithm that allowed me to solve the riddle.

Read More

Integrating Knowledge Graphs for Comparing the Scientific Output of Academia and Industry

Analysing the relationship between academia and industry allows us to understand how the knowledge produced by the universities is being adopted and enriched by the industrial sector, and ultimately affects society through the release of relevant products and services. In this paper, we present a preliminary approach to assess and compare the research outputs of academia and industry. This solution integrates data from several knowledge graphs describing scientific articles (Microsoft Academics Graph), research topics (Computer Science Ontology), organizations (Global Research Identifier Database), and types of industry (DBpedia). We focus on the Semantic Web as exemplary field and report several insights regarding the different behaviours of academia and industry, and the types of industries most active in this field.

Read More