Blog

Early Detection of Research Trends

Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, institutional funding bodies, academic publishers and companies. The literature presents several approaches to identifying the emergence of new research topics, which rely on the assumption that the topic is already exhibiting a certain degree of popularity and consistently referred to by a community of researchers. However, detecting the emergence of a new research area at an embryonic stage, i.e., before the topic has been consistently labelled by a community of researchers and associated with a number of publications, is still an open challenge.

Read More

Clique Percolation Method in Python

Clique Percolation Method (CPM) is an algorithm for finding overlapping communities within networks, introduced by Palla et al. (2005, see references). This implementation in Python, firstly detects communities of size k, then creates a clique graph. Each community will be represented by each connected component in the clique graph. Algorithm The algorithm performs the following […]

Read More

ISWC2020 – BEST DEMO OF THE DAY AWARD

The Smart Topic Miner, which is an innovative state-of-the-art AI application for automating editorial processes at Springer Nature and improving access to scientific knowledge, has been shortlisted for the “Most Innovative use of AI” DataIQ 2020 Awards. Smart Topic Miner analyses scientific publications in Computer Science and classifies them with very high accuracy in terms […]

Read More

Applying Machine Learning Techniques to Big Data in the Scholarly Domain

Ontologies of research areas have been proven to be useful in many application for analysing and making sense of scholarly data. In this lecture, I will present how we produced the Computer Science Ontology (CSO), which is the largest ontology of research areas in the field of Computer Science, and discuss a number of applications that build on CSO, to support high-level tasks, such as topic classification, research trends forecasting, metadata extraction, and recommendation of books.

Read More

Finalists at DataIQ 2020 Awards

The Smart Topic Miner, which is an innovative state-of-the-art AI application for automating editorial processes at Springer Nature and improving access to scientific knowledge, has been shortlisted for the “Most Innovative use of AI” DataIQ 2020 Awards. Smart Topic Miner analyses scientific publications in Computer Science and classifies them with very high accuracy in terms […]

Read More

The AIDA Dashboard: Analysing Conferences with Semantic Technologies

“The AIDA Dashboard: Analysing Conferences with Semantic Technologies” is a demo paper submitted to the Posters and Demos tracks of the 19th International Semantic Web Conference.   Simone Angioni1, Francesco Osborne2, Angelo A. Salatino2, Diego Reforgiato Recupero1, Enrico Motta2 1 University of Cagliari, Via Università 40, 09124 Cagliari 2 Knowledge Media Institute, The Open University, […]

Read More

AIDA Dashboard

The AIDA Dashboard is a web application that allows users to visualize several kind of analytics about a specific conference (see Figure 1). The backend is developed in Python, while the frontend is in HTML5 and Javascript. The AIDA Dashboard builds on the Academia/Industry DynAmics knowledge graph (AIDA), a large knowledge base describing 14M articles […]

Read More

Databases and Information Systems in the AI Era: Contributions from ADBIS, TPDL and EDA 2020 Workshops and Doctoral Consortium

“Databases and Information Systems in the AI Era: Contributions from ADBIS, TPDL and EDA 2020 Workshops and Doctoral Consortium” is the introductory chapter for the ADBIS , TPDL and EDA 2020 Common Workshops and Doctoral Consortium proceedings as satellite events of the 2020 International Conference on Theory and Practice of Digital Libraries (TPDL2020). Ladjel Bellatreche, […]

Read More

ResearchFlow: Understanding the Knowledge Flow between Academia and Industry

“ResearchFlow: Understanding the Knowledge Flow between Academia and Industry” is a conference paper submitted to Knowledge Engineering and Knowledge Management – 22nd International Conference, EKAW 2020. Angelo Salatino, Francesco Osborne, Enrico Motta Abstract Understanding, monitoring, and predicting the flow of knowledge between academia and industry is of critical importance for a variety of stakeholders, including governments, funding […]

Read More

Angelo and Edu Frias on the PhD Defence

Going through the final stages of your PhD? No worries! We’ve got you covered. In this episode, I invited Dr Eduardo Frias-Anaya, who defended his thesis two weeks ago, at the Open University in the UK, to talk about the final stages of a PhD. We talk about writing up a dissertation, preparation to the […]

Read More