The Computer Science Ontology is a large-scale ontology of research areas that was automatically generated using the Klink-2 algorithm on a dataset of about 16 million publications, mainly in the field of Computer Science. In the rest of the paper, we will refer to this corpus as the Rexplore dataset.
The current version of CSO includes 14,164 topics and 162,121 semantic relationships. The main root is Computer Science; however, the ontology includes also a few secondary roots, such as Linguistics, Geometry, Semantics, and so on.
CSO presents two main advantages over manually crafted categorisations used in Computer Science (e.g., 2012 ACM Classification, Microsoft Academic Search Classification). First, it can characterise higher-level research areas by means of hundreds of sub-topics and related terms, which enables to map very specific terms to higher-level research areas. Secondly, it can be easily updated by running Klink-2 on a set of new publications.
Category: Science Of Science
Are citation networks really acyclic?
Simple answer: no. However, before getting into a more detailed answer, allow me to briefly introduce the concept of citation networks, then I will describe why citation networks cannot be considered acyclic anymore. In the scholarly domain, citation networks is an information network in which each node represents a scientific paper and a link between […]
Supporting Editorial Activities at Springer Nature
The project aims at fostering Springer Nature editorial activities by supporting them with a variety of smart solutions leveraging artificial intelligence, data mining, and semantic technologies. In particular, the KMi team will support Springer Nature editorial team in classifying proceedings and other editorial products, taking informed decisions about their marketing strategy, and improve their internal classification.