Classifying Research Papers with the Computer Science Ontology

The CSO Classifier is an application for automatically classifying academic papers according to the rich taxonomy of topics from CSO. The aim is to facilitate the adoption of CSO across the various communities engaged with scholarly data and to foster the development of new applications based on this knowledge base.

Read More

The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas

Ontologies of research areas are important tools for characterising, exploring, and analysing the research landscape. Some fields of research are comprehensively described by large-scale taxonomies, e.g., MeSH in Biology and PhySH in Physics. Conversely, current Computer Science taxonomies are coarse-grained and tend to evolve slowly. For instance, the ACM classification scheme contains only about 2K research topics and the last version dates back to 2012. In this paper, we introduce the Computer Science Ontology (CSO), a large-scale, automatically generated ontology of research areas, which includes about 26K topics and 226K semantic relationships. It was created by applying the Klink-2 algorithm on a very large dataset of 16M scientific articles.

Read More

AUGUR: Forecasting the Emergence of New Research Topics

“AUGUR: Forecasting the Emergence of New Research Topics” is a paper submitted to the ACM/IEEE Joint Conference on Digital Libraries 2018, presented on June 5 2018, in Fort Worth, TX, USA   Angelo Salatino, Francesco Osborne and Enrico Motta   Abstract Being able to rapidly recognise new research trends is strategic for many stakeholders, including universities, […]

Read More

2100 AI: Reflections on the mechanisation of scientific discovery

“2100 AI: Reflections on the mechanisation of scientific discovery” is a paper submitted to the RE-CODING BLACK MIRROR Workshop co-located with the International Semantic Web Conference (ISWC) 2017, 21-25 October 2017, Vienna, Austria. Authors Andrea Mannocci, Angelo Salatino, Francesco Osborne and Enrico Motta Abstract The pace of nowadays research is hectic. Datasets and papers are […]

Read More

Smart Book Recommender: A Semantic Recommendation Engine for Editorial Products

“Smart Book Recommender: A Semantic Recommendation Engine for Editorial Products” is a poster paper that will be presented at the International Semantic Web Conference (ISWC) 2017, 21-25 October 2017, Vienna, Austria. Authors Francesco Osborne, Thiviyan Thanapalasingam, Angelo Salatino, Aliaksandr Birukou and Enrico Motta Abstract Academic publishers, such as Springer Nature, need to constantly make informed decisions […]

Read More

How are topics born? Understanding the research dynamics preceding the emergence of new areas

“How are topics born? Understanding the research dynamics preceding the emergence of new areas” is a peer-reviewed paper submitted to PeerJ Computer Science. The paper has been submitted in July 2016 and accepted in May 2017. All the co-authors are thankful to the reviewers and the editor for providing insightful comments and thus improving the […]

Read More

Ontology Forecasting in Scientific Literature: Semantic Concepts Prediction based on Innovation-Adoption Priors

“Ontology Forecasting in Scientific Literature: Semantic Concepts Prediction based on Innovation-Adoption Priors” is a peer-reviewed paper presented on Tuesday 22nd November 2016 at the “Entity detection, matching and evolution” session at the 20th International Conference on Knowledge Engineering and Knowledge Management, Bologna, Italy Authors: Amparo Elizabeth Cano-Basave, Francesco Osborne and Angelo Antonio Salatino Abstract: The […]

Read More