“Detection, Analysis, and Prediction of Research Topics with Scientific Knowledge Graphs” is a book chapter of “Predicting the Dynamics of Research Impact” edited by Springer. Angelo A. Salatino1, Andrea Mannocci2, and Francesco Osborne1 1Knowledge Media Institute – The Open University, Milton Keynes, United Kingdom 2Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Italian National Research […]
Blog

CSO Classifier 3.0: A Scalable Unsupervised Method for Classifying Documents in Terms of Research Topics
“CSO Classifier 3.0: A Scalable Unsupervised Method for Classifying Documents in Terms of Research Topics” is a journal paper accepted at the Special Issue of “TPDL 2019 & 2020” at Scientometrics. Angelo Salatino, Francesco Osborne, Enrico Motta Abstract Classifying scientific articles, patents, and other documents according to the relevant research topics is an important task, […]

Trans4E: Link Prediction on Scholarly Knowledge Graphs
“Trans4E: Link Prediction on Scholarly Knowledge Graphs” is a journal paper submitted to the Special Issue on “Knowledge Graph Representation & Reasoning” at the Neurocomputing Journal Mojtaba Nayyeria, Gokce Muge Cila, Sahar Vahdatib, Francesco Osborned, Mahfuzur Rahmana,Simone Angionie, Angelo Salatinod, Diego Reforgiato Recuperoe, Nadezhda Vassilyevaa, Enrico Mottad and Jens Lehmanna,c aSDA Research Group, University […]

Scientific Knowledge Graphs: an Overview
On 12th May 2021, I have been invited by Dimitris Sacharidis to give a lecture to the master course is INFO-H509 “XML and Web Technologies” at the Université Libre de Bruxelles. Abstract In the last decade, several Scientific Knowledge Graphs (SKG) were released, representing scientific knowledge in a structured, interlinked, and semantically rich manner. But, what […]

Clique Percolation Method in Python
Clique Percolation Method (CPM) is an algorithm for finding overlapping communities within networks, introduced by Palla et al. (2005, see references). This implementation in Python, firstly detects communities of size k, then creates a clique graph. Each community will be represented by each connected component in the clique graph. Algorithm The algorithm performs the following […]

ISWC2020 – BEST DEMO OF THE DAY AWARD
The Smart Topic Miner, which is an innovative state-of-the-art AI application for automating editorial processes at Springer Nature and improving access to scientific knowledge, has been shortlisted for the “Most Innovative use of AI” DataIQ 2020 Awards. Smart Topic Miner analyses scientific publications in Computer Science and classifies them with very high accuracy in terms […]

Applying Machine Learning Techniques to Big Data in the Scholarly Domain
Ontologies of research areas have been proven to be useful in many application for analysing and making sense of scholarly data. In this lecture, I will present how we produced the Computer Science Ontology (CSO), which is the largest ontology of research areas in the field of Computer Science, and discuss a number of applications that build on CSO, to support high-level tasks, such as topic classification, research trends forecasting, metadata extraction, and recommendation of books.

Finalists at DataIQ 2020 Awards
The Smart Topic Miner, which is an innovative state-of-the-art AI application for automating editorial processes at Springer Nature and improving access to scientific knowledge, has been shortlisted for the “Most Innovative use of AI” DataIQ 2020 Awards. Smart Topic Miner analyses scientific publications in Computer Science and classifies them with very high accuracy in terms […]

The AIDA Dashboard: Analysing Conferences with Semantic Technologies
“The AIDA Dashboard: Analysing Conferences with Semantic Technologies” is a demo paper submitted to the Posters and Demos tracks of the 19th International Semantic Web Conference. Simone Angioni1, Francesco Osborne2, Angelo A. Salatino2, Diego Reforgiato Recupero1, Enrico Motta2 1 University of Cagliari, Via Università 40, 09124 Cagliari 2 Knowledge Media Institute, The Open University, […]

AIDA Dashboard
The AIDA Dashboard is a web application that allows users to visualize several kind of analytics about a specific conference (see Figure 1). The backend is developed in Python, while the frontend is in HTML5 and Javascript. The AIDA Dashboard builds on the Academia/Industry DynAmics knowledge graph (AIDA), a large knowledge base describing 14M articles […]