“Automatic Classification of Springer Nature Proceedings with Smart Topic Miner” is conference paper presented on Friday 21st October 2016 at the 15th International Semantic Web Conference in Kobe, Japan
Authors:
Francesco Osborne, Angelo Antonio Salatino, Aliaksandr Birukou and Enrico Motta
Abstract:
The process of classifying scholarly outputs is crucial to ensure timely access to knowledge. However, this process is typically carried out manually by expert editors, leading to high costs and slow throughput. In this paper we present Smart Topic Miner (STM), a novel solution which uses semantic web technologies to classify scholarly publications on the basis of a very large automatically generated ontology of research areas. STM was developed to support the Springer Nature Computer Science editorial team in classifying proceedings in the LNCS family. It analyses in real time a set of publications provided by an editor and produces a structured set of topics and a number of Springer Nature Classification tags, which best characterise the given input. In this paper we present the architecture of the system and report on an evaluation study conducted with a team of Springer Nature editors. The results of the evaluation, which showed that STM classifies publications with a high degree of accuracy, are very encouraging and as a result we are currently discussing the required next steps to ensure large-scale deployment within the company.
Download paper (via ORO): link
Slideshare:
Here are some social posts from Springer Computer Science and Francesco Osborne:
Here are the slides of my #iswc2016 talk about classifying Springer Nature proceedings with SW technologies https://t.co/XtNxG4zBkH
— Francesco Osborne (@FraOsborne) October 21, 2016
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner, @FraOsborne @angelosalatino @enricomotta #iswc2016 @kmiou pic.twitter.com/Ohk7oZBGEN
— Allan Third (@thirda) October 21, 2016